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The effects of nonuniform gratings on gap-soliton propagation are treated theoretically using an
effective particle approach. The method is accurate and quick over a wide range of parameters. It
also provides accurate predictions about the stability of stationary gap solitons at an interface.
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I. INTRODUCTION

Theoretical studies of finite nonlinear Bragg gratings
[1,2] have shown that they can exhibit bistable optical be-
havior. At low intensities the grating is highly reflective,
but when the intensity is sufficient the transmission can
approach unity. It has been shown that when the grat-
ing is highly reflective the electric field inside it decays
nearly exponentially; in contrast, the electric field pro-
file associated with the highly transmissive states peaks
distinctively inside the grating as found by Winful et al.
[1]. These peaked field profiles have been associated with
stationary gap solitons [3]. Later Aceves and Wabnitz
[4] showed that gap solitons can traverse the grating at
any speed between zero and the speed of light. In addi-
tion, they derived analytic expressions for gap solitons in
an infinite uniform grating by noting the similarities be-
tween the nonlinear coupled mode equations (NLCMEs)
(used to describe Bragg gratings) and the exactly inte-
grable massive Thirring model. Gap solitons were found
to have frequencies that lie within the band gap of a uni-
form grating; they are thus manifestly nonlinear as in the
linear limit no pulse solutions exist within this frequency
range.

Recent experiments [5] have demonstrated all-optical
switching in optical waveguides. These experiments were
performed in a SiO, waveguide with the nonlinearity be-
ing caused by free carriers. Although free carriers pro-
vide a strong nonlinearity, they have a response time of
about 1 ns and so only the continuous wave properties
of the grating were examined. In contrast, gap-soliton
propagation requires nonlinearities with a subpicosecond
response time, which typically are much weaker [6]. Thus
the intensities required to see nonlinear propagation ef-
fects in gratings are much larger.

We have recently [7,8] proposed a scheme for launching
gap solitons in nonuniform gratings, which significantly
reduces the power needed. In particular we examined
the properties of step gratings as these are the simplest
example of nonuniform gratings. This method involves
coupling light into linear resonances of the grating, which
then forms a gap soliton. By exciting a resonance of the
grating, a major reduction in the required launch power
compared to the uniform case is possible. However, the
propagation of the gap solitons in these nonuniform grat-
ings is considerably more complicated than for the case
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of a uniform grating. This paper continues our previous
work by examining the propagation of gap solitons in
nonuniform gratings; in particular we consider the effect
of an abrupt interface on gap solitons.

The presence of an interface allows the existence of
additional stationary solutions to the coupled mode
equations. These solutions have a discontinuity in the
derivates of the field amplitudes at the interface, in con-
trast to the ordinary gap solitons. At the interface a
traveling gap soliton can be reflected, transmitted, or in
extreme cases broken up into multiple reflected solitons.
Aceves, Newell, and Moloney [9] have successfully treated
the similar problem for the nonlinear Schrédinger equa-
tion (NLSE) using an effective particle picture (EPP).
As the NLCME reduce to the NLSEs in the appropriate
limit, an EPP approach would be expected to be valid,
at least for some parameter range.

Since the NLCMEs reduce to the massive Thirring
model (MTM) in the stationary limit, the stationary gap
solitons present at an interface are solutions to the MTM
as well. Our EPP approach applies to the MTM and
by way of comparison we present the results for both
the MTM and the NLCME. As the MTM is exactly in-
tegrable, we expect that an EPP approach would work
better and we find that this is indeed the case.

II. THE EFFECTIVE PARTICLE APPROACH

Starting from Maxwell’s equations with a periodic re-
fractive index and a nonlinear polarization one can de-
rive the nonlinear coupled mode equations governing the
evolution of the slowly varying envelopes F; and F_ of
the forward and backward propagating electric fields, re-
spectively [10]. In the presence of perturbations these
equations have to be modified. Using a complex matrix
Vij to describe the perturbations, the modified coupled
mode equations can be written as

OF, i OF,
—_— 4+ —— F_ + 2T, |F_|?
181: +vg ot T + 7= F+
0| F1 2 Fy + Via(2)Fy + Viz(z)F-=0, (1)
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OF. i OF )
—Z¥+E‘87+f§f++2rw'.7:+| F_

AT, |F_[PF_ + Var (2) Fy + Vaz(x) F_= 0. (2)

The massive Thirring model equations are obtained by
setting I'; = 0 and V;; = 0. The group velocity v,
which determines the speed of the fields in the absence
of a grating, is set equal to unity by a rescaling of the
time parameter t. The parameter « describes the grating
strength. The terms I'; and I', determine the strength
of the self- and the cross-phase modulation, respectively.
In an optical Bragg grating <, I';, and ', are given by
[11]

K= W_ﬁ_”f’ I,=rI,= j}"‘zﬂn(z), (3)
where 7 is the average refractive index, An is the max-
imum refractive index change of the grating, n(?) is the
nonlinear refractive index, Z is the vacuum impedance,
and A is the free space wavelength of the light.

The perturbations to the fields in Egs. (1) and (2) are
given by the complex matrix V;;. As we have assumed
that the perturbations are proportional to the fields, the
matrix V is unable to represent the effects of a driv-
ing term; however, most other perturbations can be rep-
resented in this manner. If V is Hermitian, then the
medium is lossless, which is the case under consideration.

In the absence of any perturbations (V;; = 0) the MTM
(T's = 0) possesses the following one-soliton solution cen-
tered at £ = ¢, where { has been used to distinguish it
from the NLCME soliton [12]:

K 1 ic s o
(+(z,t) = oT. A €*? sin(d) sech(6 — i6/2), (4)
(_(z,t) = — 2; A €' sin(8) sech(d +i6/2),  (5)
where
0 = vksind(xz — zo — xt), (6)
o = ykcosd(xxz —t —to), (7

1 1-x 1/4
1= i A=(1) ®)

In terms of this solution we can write the solitary wave
solutions to the NLCME as [4]

Fi(z,t) = aci(:l:,t)ei"(e), (9)
where
Fa 1+ X2 _%
a= 1+2F31—X2 (10)

and 7)(6) is a phase factor, the form of which is not im-
portant here. These solutions for both the MTM and
the NLCME are characterized by three parameters 6, x,
and t9. The parameter ¢y defines a constant phase and
in the absence of any other fields it is unimportant. The

velocity of the gap soliton is given by xv, and hence x
must lie in the range —1 < x < 1. The third parameter
4 determines the width, height, and central frequency of
the gap soliton and lies in the range 0 < § < 7. In the
case where both § and x are small, the solitary wave so-
lution reduces to the NLSE soliton [11]. When x = 0 or
I'; = 0 the phase factor n in Eq. (9) is identically zero
and the solution reduces to the MTM soliton.

In the presence of perturbations analytic soliton solu-
tions do not usually exist. However, if the perturbations
are small, then we can make the EPP assumption that
we can always describe the field as a gap soliton. Thus, in
the EPP approach we are interested in the time evolution
of § and x as these uniquely define the gap-soliton up to a
constant phase factor. The aim of this section is to derive
equations of motion for § and x. This is done by consid-
ering a small set of global moments of the field that in
the absence of any perturbations, completely character-
ize the gap soliton. The moments chosen are analogous
to the moments used by Aceves et al. [9]. The moments
we use are given below, where they are defined (=) and
then evaluated for the particular case of a gap soliton

(=): the energy Q

26a?
r,’

“+oo
Q= /_ (1F4 12 + |F|?) dz = (11)

the average position Z

T

1 [t
Z?/ e (|F? +1F_P) de = 2o +xt,  (12)

the velocity v

“+o0o

=5/ (FP-1FPd=-x @)
and the momentum P
P=_i / T (FrouFs + Fro.F) do (14)
= Maz iné + Ma‘*(siné — dcos ).

r, & ° 2

In Eqgs. (11)—(14) the results for the MTM soliton can be
obtained by setting @ = 1 and I, = 0. Note that both the
energy Q and the momentum P are conserved quantities
of the unperturbed equations [12,13]. The equations also
possess a third conserved quantity, namely, the Hamilto-
nian [12], that is not used in this approach. These mo-
ments are chosen so that if a gap-soliton is present, then
knowledge of these moments allows us to reconstruct the
gap soliton up to a constant phase factor.

Using the coupled mode equations [Eqgs. (1) and (2)]
the time derivates of the above moments [Eqgs. (11)—(14)]
can easily be calculated; taking the perturbation matrix
V to be Hermitian, we find

aQ _

- =0, (15)
dz

=Y (16)



4980
+oo
% - % Im(F, F*)de, (17)
ap [t 2 0Vi; 2 OVaa
dt /—oo [l}-” or + 17 oz
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Equation (15) expresses energy conservation, as discussed
in Sec. I. Equation (16) confirms that the definitions of
position and the velocity given by Egs. (12) and (13) are
mutually consistent.

Though Egs. (15)—(18) are exact, the integrals are in
general difficult to evaluate since it is necessary to know
the fields exactly at all times (i.e., we have to solve the
coupled mode equations). To get a simpler set of equa-
tion we use the EPP assumption, i.e., the field is always
described by a gap-soliton. In particular this implies that
v = x. We now have four equations for the three un-
knowns 4, x, and the center of the gap soliton Z, so one
equation is redundant. Following Aceves et al. [9] we
work with P and drop Eq. (17). Since P, unlike v, is
a conserved quantity of the unperturbed equations, P is
more sensitive to the effects of the perturbations. This
is reflected in the perturbations V;; appearing explicitly
in Eq. (18), but not in Eq. (17). Of the three remaining
equations, Eq. (15) in conjunction with Eq. (11) allows
4(t) to be expressed in terms of the initial energy and
x(t), thus eliminating § from the system of equations.
We now have two equations [Egs. (16) and (18)] for the
two remaining unknowns Z and x. Assuming that the
integrals in Eq. (18) can be done exactly using the ex-
pressions for the gap soliton we have reduced the two
partial differential equations [Egs. (1) and (2)] to two
ordinary differential equations [Egs. (16) and (18)].

For perturbations, involving gain or loss Egs. (15)—(18)
slightly change; in particular d@Q/dt # 0 as expected.
Also Eq. (16) contains extra terms that indicate that for
nonuniform gain, the center of mass of the soliton even-
tually lies in the region of highest gain. We note further
that earlier work on the effects of gain and loss [14,15]
on gap solitons can be reproduced using the appropiate
non-Hermitian V;;.

Having derived the EPP equations [Egs. (16) and
(18)], we next present two applications. The first deals
with the stability of stationary solutions at interfaces and
the second with the motion of gap solitons at interfaces.

III. STABILITY OF STATIONARY SOLITON
SOLUTIONS

The EPP can be used to predict the stability of non-
linear surface waves. In this section we first derive the
exact expressions for the surface waves and then show
how in one particular case the EPP provides insight into
the stability of these waves. Although we only present
one case in detail, the EPP can be used for determining
the stability for more general perturbations.
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A. Stationary solutions at an interface

While the soliton solutions [Eq. (9)] are valid for uni-
form gratings, we are interested in gratings that are
nonuniform. In particular we consider a grating consist-
ing of two half infinite uniform gratings joined at the
origin (z = 0), with the grating parameters changing
discontinuously there [9]. The parameters for z < 0 are
denoted by the subscript [, e.g., x;, while the subscript »
denotes the right-hand grating (z > 0). We also assume
that the right-hand grating can have an arbitrary phase
¢ with respect to the left-hand grating.

We obtain stationary soliton solutions by assuming
that we have part of a gap soliton in each half, but peaked
at different positions and by matching the fields at z = 0.
In particular, for z < 0 we have

.7'-l,+(.’13,t) =« % e trt cos &t sin (51)
xsech [k sin é;(z — =) — 16;/2]. (19)

For £ > 0 we have a similar solution, only peaked at
x = z,. There is now a phase factor —¢/2 due to the
phase difference ¢ between the two gratings and also an
overall phase factor ¥ and thus

Fro4(z,t) = eVe—i9/2o | Br_ g—inecosbit sin (8,)
’ 2,

xsech [k, sind,(z — z,) — 16, /2]. (20)
The solutions for F_ are

f{y_(m,t) = _[]-'1‘4_(:[’ t)]*e—Zim cos&,t,
Fr—(2,t) = —*¥[Fp 1 (x, )] e 2inr o0, (21)

To obtain a solution for —oco < < oo we need to match
the solutions for 7, and F_ at x = 0. Assuming that we
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FIG. 1. Plot of field intensities for stationary gap solitons
with 6 = 2.5. The solid line shows the stationary solution

peaked in the high « grating, while the dotted line shows the
solution peaked in the low x medium. The interface is at
z=0withk;=1cm ' and k, = 1.1 cm™!.
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know F,, then Eq. (21) implies that exp(2i1) = 1 or that
¥ = 0 or ¢p = w. Equating the real and imaginary parts of
Fi,+(0,t) and F, ;(0,t), this leads to two equations for
61,6r, 1, .. The exponential time dependence of each
equation implies that

cos(8;/2) cos(¢/2)
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K] €OS 8 = K, COS O,. (22)

Factoring out the time dependence we find two equations
for z; and x,.,

—sin(d; /2) sin(¢/2)

Cr _ sin 67' T cos(68,/2) cos(8,/2) ] (23)
s sind; V £ | cos(61/2)sin(6/2) — sin(61/2) cos(/2) sy
’ sin(4,/2) sin(3,/2)
[
where solution is single peaked. A typical solution is shown in
Fig. 1.
¢; = cosh(k;siné;x;), s, = sinh(k; sin &), (24) If we allow an arbitrary phase difference 1) between the

¢, = cosh(k,sind,z,), s, =sinh(k,siné,z,.), (25)

K1 F[
=, =" 26
w= T, (26)

The top sign in Eq. (23) corresponds to the case where
¥ = 0, while the bottom sign implies ¥ = n. Using
c2 —s2 = 1 we can eliminate z,, which leaves us with one
equation for z;. Similarly we can eliminate z; to get an
equation for z,.

If the phase difference ¢ between the two gratings is
either 0 or 7, Egs. (23) can be solved exactly for z; and
z,. In both these cases, in order for solutions to exist,
it is necessary for é; > m/2. Recall that the energy of
a gap soliton is proportional to §, so a minimum value
for § implies a minimum energy for the solution to exist.
We then find two stationary solutions for if z; and =z,
are solutions to Eq. (23), then so are —xz; and —x,. It is
found that the signs of z; and z, are the same, hence the
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FIG. 2. Plots of typical stationary solutions when a phase
change is introduced between the two gratings. The solid line
shows the field intensity for a soliton with § = 0.5 with a
grating phase change of ¢ = 0.5. The dotted line gives the
intensity for a soliton with § = 0.45 and for a phase change
of ¢ = —0.5. The grating has a strength x =1 cm™!.

two gratings, then Egs. (23) have to be solved numeri-
cally. Here we find that no restriction can be placed on
d; in contrast to the previous case. Also here we find that
z; and z, can have different signs leading to either a two
peaked solution if z; < 0 and z, > 1 or a “zero” peaked
solution if z; > 0 and z, < 0. Such solutions are shown
in Fig. 2.

We note in passing that ultimately the electric and
magnetic fields are continuous over grating discontinu-
ities, not the envelopes functions. However, for the weak
gratings we are considering here, Maxwell’s saltus condi-
tions reduce to the continuity of the F, to a good ap-
proximation.

B. Stability

For the stationary solutions given by Egs. (19)-(21) to
be experimentally observable, they must be stable. When
we have a pair of solutions z;,z, and —z;, —z, then one,
two, or none of the solutions might be stable. Since these
solutions peak in different gratings, they have different
energies (Q) and one might expect that the solution with
the lower energy to be stable.

The usual exact way to determine stability is to per-
form a linear stability analysis of the solutions or to sim-
ulate the solutions with a full time dependence on a com-
puter. However, in Newtonian dynamics the stability of
a stationary particle is determined by whether or not it
is at a local minimum of the potential. Hence if we could
define a potential for our solutions, then determining sta-
bility would be a simpler task. Using the EPP approach
this method is possible.

As an example we consider the case where the only
grating parameter to change across the interface is k.

This case is of particular interest as such step gratings

have reduced thresholds for the launching of gap solitons
[8]. The perturbation matrix in Egs. (1) and (2) is then

Vii = V22 =0, (27)
Kp — K H z), z < 0
Vig=Va1 = { (re (— Kr) [{)— '(H()ﬂ?)], z >0, (28)

where ki, k, are the grating strengths on the left- and the
right-hand side, respectively, and H(z) is the Heaviside
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Lorentz step function. This perturbation is then used in
the EPP Egs. (16)—(18). The resulting equations are

dz

= = 29
2 _, (29)

3
P = 250y 2 sind + Ma‘l(siné —dcosé), (30)
I, 2

dpP
2 - F 31
P _F (31)

where, for Z < 0, the force F' is defined as
a?(k; — Ky) cosh? @ cos §; + sin® &;/2

» (32)
2, (cosh®  — sin® 6;/2) 2
0 = Kk;sin §;Z. (33)

F= sin?(d;)

For £ > 0 the force is similar to Eq. (32), but with
01 — 6, and 6 = K,siné,.Z. Note that from Egs. (31)
and (32) dP/dt = 0 only if § > n/2 or if K, = K.
When «, = ki, then F' = 0 and stationary solitons can
exist everywhere, as expected for a uniform grating. If
Kr # K, then according to the EPP approach stationary
solutions can exist only if § > 7/2 and when

— 3 2
0 = +cosh™? V —%5(?/2—)’ (34)

as otherwise there would be a force on the soliton. This
agrees with our result in Sec. III A that stationary soli-
tons only exist when § > 7/2. In the low velocity limit
the momentum [given by Eq. (30)] is proportional to the
soliton’s velocity and the left-hand side of Eq. (32) is
independent of velocity. In this case we can define a po-
tential as

V(z) = — /_ " F(a)dz. (35)

For stationary gap solitons this is a true potential, while
for slowly moving solitons the potential is an approxi-
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FIG. 3. Plot of the EPP potential corresponding to the
case where the grating strength s increases discontinuously
at the origin. This potential implies that stationary solutions
peaked in the left-hand medium are stable while those in the
right are unstable. Here k; = 1 cm ™! and &, = 1.1 cm ™! with
the interface at ¢ = 0.
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mation. This potential can be used in determining the
stability of stationary soliton solutions. Figure 3 shows
a typical potential with k;, = 1cm™! and &, = 1.1cm™1,
which has a local minimum in the left-hand medium and
a local maximum in the right-hand medium. Hence the
EPP predicts that the stationary solution peaked in the
left-hand medium are stable and the one peaked in the
right-hand medium is unstable. This agrees with our
numerical studies. Note that the stable soliton in the
left-hand medium has the lower energy, as suggested at
the start of the section.

The exact form of the potential defined by Eq. (35)
is valid only for perturbations where the strength of «
changes discontinuously across the interface. More gen-
eral perturbations would include changes in the nonlin-
earity and the phase of the second grating. In this general
case the perturbation matrix V takes the form (for z < 0)

Vii = [(Tar — Tat) [F_ > + (Tar — Twt) |74 [*] H(z), (36)
V12 = ‘/2*1 = ("‘37‘ - Elei¢)7{(m)’ (37)
Vaz = [(Car — Tat) [Fi* + (Tor — Tat) | F_|?] H(z). (38)

The analysis for the more general perturbation follows
exactly the method presented above. As Egs. (15)—(18)
are linear in V, each term in the perturbation matrix can
be treated separately, with the final force being the sum
of all the individual forces. In all cases a potential de-
fined by Eq. (35) can be used to determine the stability
of the stationary gap solitons. Since the potential de-
pends on x?2 it is correctly defined only for a stationary
gap soliton and is an approximation for slowly moving
solitons. However, these potentials arising from the EPP
approach allow us to make accurate predictions about the
stability of the stationary gap solitons in regimes where
no analytic results are known.

IV. MOVING SOLITONS
AND STATIONARY INTERFACES

In Sec. III the EPP approach was used to predict the
stability of stationary solutions at an interface. However,
once the gap soliton has a nonzero velocity the EPP equa-
tions cannot be solved exactly. Instead we solve the EPP
equations numerically, which is faster than resorting to
full numerical simulations. As in Sec. III, we consider an
interface between two different uniform gratings. How-
ever, as the soliton is moving there is a difference between
the coupled mode equations and the MTM and the two
cases have to be treated separately.

We consider only the case of a discontinuous change in
k. The perturbation matrix is again given by Egs. (27)
and (28). The resulting EPP equations are thus the same
as in Sec. IIT B. In contrast to the preceding section,
we now consider a soliton located at [Z| > 0 moving
with a velocity v. While the gap soliton does not cross
the interface, the EPP force on the gap soliton changes
continuously. If the soliton is in the left-hand medium,
then the right-hand medium is treated as a perturbation;
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however, when the gap soliton crosses the interface the
roles are reversed. This abrupt change is reflected in the
EPP force being discontinuous at the origin and is an
artifact of the EPP method. We assume that as we have
a soliton, then at the interface there is no significant loss
of energy due to radiation and that we always have only
a single pulse in the system. Our numerical simulations
support this assumption, except in extreme cases where
the gap soliton is found to break up.

Recall that gap solitons are defined by two parameters
6 and x. Thus for each different interface we need to test
the EPP approach over a wide range of parameters. We
have divided the (4, x) plane into four main regions, as
shown in Fig. 4. Regions 1 and 4 are discussed briefly,
while we examine regions 2 and 3 in more detail. In
region 4, solitons are small, wide, and slowly moving. In
this region both the MTM and the NLCME reduce to the
nonlinear Schrodinger equation. As Aceves et al. [9] have
successfully applied the EPP approach to the NLSE, we
do not discuss this region in detail. In this region the
potential defined by Eq. (35) can be used to determine
accurately the dynamics of the gap soliton’s motion as in
this limit the EPP approach reduces to that of a particle
moving in a potential well.

Figure 5 compares the results from the EPP approach
to the exact numerical simulations for the NLCME in re-
gion 3 of Fig. 4. In this region the gap soliton is slow and
strongly peaked. The dashed line shows the EPP trajec-
tories through (z, x) space, while the solid line shows the
exact trajectories. In these simulations the gap soliton
parameter 6 = 2, while the initial velocity is in the range
—0.5v4 < v < 0.5vy. Further kK, = 1 cm™ and &, = 1.1
cm ™!, while the other parameters remain constant across
the interface. The potential corresponding to this pertur-
bation is shown Fig. 3. The EPP force, given by Eq. (32),
is velocity dependent as both a and 6 depend on v and so
the motion of the gap soliton cannot be reduced to that a
particle moving in a potential well. As the force depends
only on the square of the velocity, in the low velocity
regime we can assume a velocity independent force and
hence we can define an approximate potential. It should
be noted that the general features of the potential agree
with the general features of the phase plots. According
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FIG. 4. Different regions of the (4, x) plane.
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FIG. 5. Various trajectories in the (v,z) plane. The dot-
ted lines shows the results from the EPP approach, the solid
lines the results from the exact numerical simulations. The
potential in this case is given in Fig. 3

to the potential, the high x region has a higher poten-
tial than the left-hand side. Thus we would expect that
low velocity gap solitons in the left-hand medium are re-
flected by the interface, while those that penetrate have
a reduced velocity, as is the case in Fig. 5. In contrast,
gap solitons moving from right to left speed up as they
cross the interface. A main feature of the phase plots
in this region is the oscillations of the gap soliton after
it has interacted with the interface. In most cases these
oscillations eventually decay for both the MTM and the
NLCME solitons. In more severe cases the oscillations
can cause the NLCME soliton to split into two solitons
moving with a different velocity. The EPP approach, as
presented here, is unable to capture this feature as in
the EPP approach the gap soliton is not allowed any in-
ternal degrees of freedom corresponding to oscillations.
However, the EPP approach does correctly predict the
average velocity after the interaction.

In region 2 the solitons are fast and narrow. Here the
difference between the MTM soliton and NLCME soliton
is the greatest. As the MTM soliton is a true soliton, the
effect of the interface is not as severe as in the case of the
gap soliton, which is a solitary wave. Figure 6 shows a
phase plot for a gap soliton with § = 2.3 and x = 0.7 for
both the EPP (dotted line) and the full simulations. As
in the previous plots, kK, = 1 cm™! and &k, = 1.1 cm™!.
The velocity of the gap-soliton oscillates about the EPP
velocity with the amplitude of the oscillations decaying
as the soliton moves away from the interface (at z = 0).

When the change in grating strengths at the interface
becomes larger our EPP model breaks down. The reason
for this is shown in Fig. 7, where the left-hand plot shows
the initial soliton and the right-hand plot shows the field
distribution after interacting with the interface. In this
case K = 1 cm™! and k, = 2 cm™!, while § = 2.3 and
x = 0.7. Since the EPP approach assumes that we only
have small perturbations, it is not unexpected that it will
fail for large perturbations. Clearly in this regime our
assumption that the field remains as a single soliton is
incorrect. To accurately model this region with an EPP
approach we would have to include both a reflected and
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FIG. 6. Trajectory in the (v,z) plane. The dotted line
shows the results from the EPP approach, the solid lines the
result from the exact numerical simulation. The parameters
for the grating are the same as in Fig. 3.

a transmitted pulse, which would double the complexity
of the system.

In region 2 the EPP approach is more accurate for
the massive Thirring model, presumably as the MTM is
exactly integrable. Thus the MTM soliton is more robust
and less likely to break up.

In region 1 of Fig. 4 the solitons are fast and wide and
the central frequency is close to the upper band edge.
Due to the velocity dependence of the EPP force, we are
unable to define a potential in this region though the
EPP approach is still accurate. In order to obtain the
EPP results we need to integrate the EPP equations nu-
merically. As the EPP equations are coupled ordinary
differential equations, this is of course much faster than
solving the full partial differential equations. The gen-
eral features of trajectories in this region is that a gap
soliton’s velocity increases if it moves into a region where
K is lower and the velocity decreases when it moves into
a region of high k. These general features are in qualita-
tive agreement with the low velocity potential, where the
region of lowest « is also the region where the potential
is the lesser. Since the main features are similar to the
other regions where the EPP holds we present no figures
for region 1.
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V. DISCUSSION

In this paper we concentrated on discontinuities of «.
One reason for this is that we have proposed a scheme
for launching gap solitons that rely on such perturbations
and thus it is important to know how these perturbations
affect the gap soliton’s motion. In contrast, the strength
of the nonlinearity is an intrinsic material property and
thus in order to change the strength of the nonlinearity
the grating would have to overlap two different materi-
als. Such structures are more difficult to achieve in the
context of optical fiber Bragg gratings and thus we have
not examined them in much detail. However, the EPP
approach presented here can be applied to such cases.

In the case of more complicated perturbations, the per-
turbations can be broken down into simple perturbations,
each of which can be treated separately via the EPP ap-
proach. For each perturbation the EPP “force” can be
derived and the total force is the sum of all the forces.
Thus our approach of only treating perturbations to « is
justified in the case of a more general perturbation, as
the contribution to the force from a perturbation to « is
given by our approach irrespective of any other pertur-
bations.

The EPP approach presented here involves a pertur-
bation matrix V. However, for a nonlinear perturbation
V is not uniquely defined. Consider a term proportional
to F_F*F,, which could arise from a perturbation in
the nonlinearity; then this term can be included in either
the Vi1 or the Vi2 element in Eq. (1). However, in the
cases we have considered this ambiguity does not affect
the final results. If the perturbation can be expressed in
such a way as to ensure that V is Hermitian, then this
form is usually preferable as, for a Hermitian matrix, the
EPP equations can be written in a simpler form.

VI. CONCLUSION

In this paper we have presented a general framework
for treating perturbations to gap solitons, by using an
effective particle picture. Although the EPP is very gen-
eral, in the examples we have concentrated on abrupt
perturbations to the strength of the grating. We have
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FIG. 7. (a) Initial profile of
a gap-soliton with 6 = 2.3 and
x = 0.7. (b) Electric field pro-
file after interaction with the in-
terface. The solid line shows
the total intensity, the dotted
line represents |F |, and the
dashed line |F_-|?. The inter-
face is at z = 0 with x; = 1

Distance

(a)

cm™! and K, = 2 cm L.

Distance

(b)



51 GAP-SOLITON PROPAGATION IN NONUNIFORM GRATINGS 4985

also examined the effect of perturbations to the MTM
model to provide a comparison for the result of the
NLCMEs.

The EPP approach is successful over a wide range of
initial conditions, but our current approach fails for the
NLCME in extreme cases where the gap soliton breaks
up. The results for the MTM in this limit are more ac-
curate as the MTM soliton is more robust. The reason
for this is that in extreme cases the NLCME soliton is
more likely to break up at the interface than the MTM
soliton. As our model assumes that we always have only
one gap soliton, it is unable to treat this case. However,
the model should be capable of being easily extendable to

dealing with multisolitons, and this is not a fundamental
flaw of the EPP approach.
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